Water Permeability of Cracked Cementitious Composites

نویسندگان

  • MICHAEL LEPECH
  • VICTOR C. LI
چکیده

Cracking is one of the most severe problems facing the concrete industry worldwide. Of critical importance is the drastic decline of durability associated with these cracks, and the resulting cost of repair or replacement of concrete structures. This research examines the effect of crack width and crack frequency upon the durability of reinforced mortar, quantified by water permeability. Crack widths tested range from 0mm (for uncracked mortar) up to 2.7mm. In addition to mortar, the durability performance of Engineered Cementitious Composites, or ECC, are also investigated in the cracked state. This high performance fiber reinforced cementitious composite exhibits closely spaced microcracks with inherently tight crack widths, typically less than 80 micron, even when strained up to 5% in uniaxial tension. The advantages of closely spaced microcracks over a small number of large cracks are investigated and discussed. Results show that even with a large number of closely spaced microcracks, the inherently small crack width of ECC material exhibits a water permeability close to that of uncracked concrete when strained up to 1.5% in uniaxial tension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Study on Cementitious Composites Embedded with Organic Microcapsules

The recovery behavior for strength and impermeability of cementitious composites embedded with organic microcapsules was investigated in this study. Mortar specimens were formed by mixing the organic microcapsules and a catalyst with cement and sand. The mechanical behaviors of flexural and compression strength were tested. The results showed that strength could increase by up to nine percent w...

متن کامل

Self-Sealing Cementitious Materials by Using Water-Swelling Rubber Particles

Water ingress into cracked concrete structures is a serious problem, as it can cause leakage and reinforcement corrosion and thus reduce functionality and safety of the structures. In this study, the application of water-swelling rubber particles for providing the cracked concrete a self-sealing function was developed. The feasibility of applying water-swelling rubber particles and the influenc...

متن کامل

Self-Healing Capability of Fibre Reinforced Cementitious Composites

Abstract In order to investigate the self-healing capability of fibre reinforced cementitious composites (FRCC), mechanical properties and surface morphology of crack in FRCC were studied. Three types of FRCC specimens containing (1) polyethylene (PE) fibre, (2) steel cord (SC) fibre, and (3) hybrid fibres composite (both of PE and SC) were prepared. These specimens, in which cracks were introd...

متن کامل

Experiments on Tensile and Shear Characteristics of Amorphous Micro Steel (AMS) Fibre-Reinforced Cementitious Composites

Amorphous micro-steel (AMS) fibre made by cooling of liquid pig iron is flexible, light and durable to corrosion, then to be compatible with high flowable and disperable states of mixing as well as high ductile post-cracked performances to apply in fibre-reinforced cementitious composites. In the current research, AMS fibre-reinforced cementitious composites based on cement and alkali-activated...

متن کامل

Self-Healing Capability of Fiber-Reinforced Cementitious Composites for Recovery of Watertightness and Mechanical Properties

Various types of fiber reinforced cementitious composites (FRCCs) were experimentally studied to evaluate their self-healing capabilities regarding their watertightness and mechanical properties. Cracks were induced in the FRCC specimens during a tensile loading test, and the specimens were then immersed in static water for self-healing. By water permeability and reloading tests, it was determi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004